Recent Advances in
Direct Methanol Fuel Cells
at Los Alamos National Laboratory

Xiaoming Ren, Sharon Thomas, Piotr Zelenay and Shimshon Gottesfeld

Materials Science and Technology Division, LANL

Outline

- Programs & Projects
 - DMFCs for Portable Power Sources (DARPA)
 - DMFCs for Potential Transportation Applications (US DOE/OAAT)
- <u>Technical -- Cells and Short Stacks</u>
 - POWER DENSITY
 - CROSSOVER AND FUEL UTILIZATION
 - COMMENTS ON ELECTROCATALYSIS

DMFCs for Portable Power Sources LANL Activities

(1) DMFC Core Technology Developments

*Cell and stack component optimization

*Target maximized performance (power & efficiency) under the relevant operation conditions

(2) DMFC Stack technology

* Develop DMFC stack generating 50W net power at ambient air pressure, near 60°C

DMFCs for Portable Power Source Recent Achievements

- (1) MEA composition & fabrication optimized
- (2) Optimized MEA & new DMFC hardware enable:
 - *300W/l of active volume at 1 atm, 60°C
 - *5-cell stack tested successfully (1000 hrs)
 - *First introduction of 50W DMFC stack in 50W/150Wh system scheduled by end of '99
- (* Completely passive DMFC of similar structure yielded recently 15 mW/cm² of MEA)

DMFCs for Potential Transportation Applications

Objectives:

- Develop DMFC materials, components and operation conditions to demonstrate the potential of DMFCs for transportation applications in terms of *power density*, *energy conversion efficiency and cost:*
 - * optimize anode catalyst for performance & lower cost;
 - *Prove low fuel utilization can be resolved with membranes of good conductivity and optimized stack operation conditions;
 - * Prove stability of all cell components in longer term operation

DMFCs for Potential Transportation Applications

Achievements

- 5-cell LANL stack reconfigured to operate at 100°C, 30 psig air, generating 1 kW per liter of active stack volume
- Fuel utilization near 90% demonstrated in 5-cell DMFC stack near the expected design point of 0.50V
- This corresponds to overall conversion efficiency of 37%
- Catalyst requirements lowered to 5 g Pt kW⁻¹ vs. about 2 g Pt kW⁻¹ estimated for today's on-board reforming system

DMFCs for Potential Transportation Applications Status

*In terms of *power density* and *energy conversion efficiency*, the DMFC (based on short stack results) is today comparable with an on-board methanol reforming system (** Vehicle w. DMFC power system is considered ZEV)

* There is a remaining (*although smaller than perceived*) gap in precious metal catalyst requirements, with the DMFC requiring 5 g Pt kW⁻¹ vs. about 2 g Pt kW⁻¹ required today for an on-board reforming system

DMFCs for Portable Power & Transportation Applications Future Efforts

System Level Work with Presnt Technology:

Liquid feed DMFCs with "leaky membranes" need to be demonstrated at the *system level* with full resolution of efficiency and water management challenges

<u>R&D:</u>

Enhanced anode activity is key for elevating system efficiency over 37%. This can be achieved with either catalyst better than PtRu, strong improvement in anode catalyst layer structure and/or higher cell temperature

Less leaky membranes are of interest provided they maintain protonic conductivity of 0.1 σ /cm

Acknowledgements

Work on DMFCs for Portable Power Applications supported by:

Defense Advanced Research Projects Agency (DARPA)

Work on Polymer Electrolyte Fuel Cells & DMFCs for Transportation Applications, supported by:

US DOE/Office of Advanced Automotive Technology

